Integration of OpenMined and
Zero-Knowledge Proots into
Ocean Protocol

Version 1.00
March 11, 2021

Contents
[1__Introductionl

12 Machine Learning with ZKPs|

13 Bridging OpenMined to Ocean Protocol|

4__Conclusionl

1 Introduction

Zoracles is announcing the partnership with Ocean Protocol to collaborate on
integration of Machine Learning and Zero-Knowledge Proofs (ZKPs) for the
Ocean Ecosystem. Ocean Protocol is a decentralized data exchange protocol
that lets people share and monetize data while guaranteeing control, auditabil-
ity, transparency, and compliance to all actors involved. It supports DataTo-
kens and Compute-To-Data which enables a robust marketplace for data. Their
ecosystem is enabling a Web3 economy vital for democratizing the monetization
of data.

Data s the new currency.

Humans are considered to be the most valuable resource on Earth. It is not
directly related to our ability to influence an economy, but rather due to a result
of the data we generate in the information age. Data is the new oil and humans
generate a tremendous amount of data every day across the globe. Monetizing
data is allowing corporations such as Google to amass a fortune in terms of big
data.

Data can be public data, data generated and owned by the organization de-
veloping the application, or private data acquired by 3rd parties. Public data is
not an issue. When data that should be kept private gets in the wrong hands,
adversity can ensue. A data breach at a government agency, for example, can
put confidential information in the hands of an enemy state or malicious actor.
A breach at a corporation can put proprietary data in the hands of a competitor.

Thus data privacy is too important.

Privacy is a concern not only related to Artificial Intelligence (AI) but any
data-related field in general. It is about liberty - people having control over
their personal data and the decisions taken based with such data.

Introducing OpenMined, an open-source community focused on building
technology to facilitate the decentralized ownership of data and intelligence
by providing a peer-to-peer network which allows any new company or person
to train their AI models on user data, without the actual owner of data losing
control over it. OpenMined aims to provide data sets which are very similar to
those owned by big data companies and to provide compensation for the actual
owners of that data. This will help reduce the monopoly of large companies by
reducing the barrier of entry for newer players who wants access to large data
sets, and to ensure the financial gains are equally distributed.

2 Machine Learning with ZKPs

< Zero-Knowledge Proofs for Machine Learning >

Security & Privacy

Privacy-Preserving Protocols

Let’s consider a clinical decision support service application via Al. In this
application, a hospital takes a patient’s CT scan or X-ray, and sends the scanned
image to the Al doctor. Then the AI doctor diagnoses the disease based on the
image and returns the diagnosis result to the hospital and the patient. The
integrity check of the Al results is required since incorrect results may endanger
the life of the patient.

The most straightforward approach to verify the result is to re-execute the
same Al program. However, it is impossible in most cases since the Al weight
parameters are important Ips and are not available publicly. In addition, the
privacy of input data is another issue to consider. In our scenario, we allow
the AT doctor to know the user’s input for diagnosis but it may be desirable to
hide the user’s private information when the diagnosis result is transferred to
the third party - such as an insurance company. In this situation it should be
possible for the insurance company to verify that the diagnosis result is correct
without the private information of input data as well as Al weights.

Fortunately, the advanced cryptographic tool called zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKSs) can solve the problem to
verify the correctness of results without revealing private information.

In zk-SNARKS, a prover generates a proof 7 using public input/output data
(or statement ¢) and secret input data (or witness w) for a given function.
A verifier can check the validity of the statement ¢ with the proof = without
the secret input data w. zk-SNARKSs can also be used to protect the privacy
of user’s input data from the verifier when used together with a commitment
scheme. The commitment scheme is a cryptographic primitive that allows one
to commit to his choice while keeping it hidden to others (hiding) so that he
can no longer change his choice (binding). Since the zk-SNARKSs proof can
include the correct computation of the commitment scheme, it can be verified
with proof and commitment alone that the result is computed correctly.

e

(2) Publish the commitment {c,).
i =

Public
Repository

(1) Commit to the Al

IE (5) Diagnose a disease.
I weight values. S

@ (6) Generate a proof.
I

Al doctor

(11) Verify the Al doctor's
diagnosis result. 9 EE

Insurance
Company

FZ) send the diagnosis (y),

% commitments (c,, ¢,),
and its proof { x). F_:I
B

g op =
+ B
ffRas ¢
(8) Send the scanned image (x), the

Hospital diagnosis (y), commitments (c,, ¢,), Patient
and proof ().

(4) Send the scanned image (x).

m (3) Take a CT scan or

(9) Verify the Al doctor's
X-ray of patient.)

diagnosis result.

The Al doctor first generates a commitment ¢, by committing to Al weight
values a and publishes the commitment ¢, in a public repository so that the
correctness computation of the model can be transparently checked against the
published ¢,. The AI doctor computes a diagnosis result, y, on received input
data z from the hospital and AI weights a. In addition, the AI doctor makes
a commitment ¢, from the input data z to hide the input data, and gener-
ates a proof m for a statement including the input commitment, the weight
commitment and the output result (¢ = (¢, cq,y)) with a witness comprising
(w = (z,a)). The proof = and the statement ¢ is provided to the hospital and
the patient. Then they can check the correctness of the statement ¢ with the
proof w. Moreover, the hospital and the patient can transfer the statement ¢
to any third party like an insurance company. The insurance company can also
check the statement ¢ with the proof = without input data x and weight values a.

The zk-SNARKSs require significant amounts of computations on the prover’s
side. In zk-SNARKSs, a function is translated to an arithmetic circuit compris-
ing addition and multiplication gates to be represented as quadratic arithmetic
programs (QAPs). The proving time is proportional to the number of multi-
plications in QAPs. In addition, the size of public parameters called common
reference string (CRS) linearly increases according to the number of multiplica-
tions.

@ (10) Send the diagnosis (),
commitments (¢, ¢,),

and its proof {).

Thus, the main hurdle to apply zk-SNARKSs to real applications is how to
minimize the proving time.

kernel
-
P B |a e | - |
-
- -
'__.-l'-" ..1-'""..
- -
—— -
F""-.‘ '.‘I_.--"‘--I‘-L
2|lajasj]..le|]ez q__..--'"'- Kernel size multiplications
e |

Input

Yo = 1'@14-1 + -":1(“3'{-3 + """1':-1@0

M EXyea g b ras gtk xrag

Input size = output size

V-1 =Xn* Qg + Tnea * @z + 4 Tpypa * g

3 Bridging OpenMined to Ocean Protocol

The next challenging part is building Bridge to Ocean Protocol. Fortunately,
OpenMined provides a Python library (PySyft) for computing on data. PySyft
might be really helpful for us to connect to Ocean’s data marketplace.

https://github.com/OpenMined/PySyft/tree/master/examples/duet/

https://github.com/OpenMined/PySyft

(N J & Syft Duet - Data Owner ¢ - Ji X + (X J & Syft Duet - Data Scientist # X +

T Jupyter SyftDuet-DataOwner¢’ @ togow _ Jupyter Syft Duet - Data Scientist w @ Logout

In [1]: In [1]:
import syft as sy import syft as sy
duet = sy.duet() duet = sy.join_duet()
NN > CONNECTED! /& 222 Joining Duet NN K M
040 > DUET LIVE STATUS In [2]:

Objects: 1 Requests: 0 Messages: 1 duet.store.pandas
In [2]: out[2]:
import torch ID Tags Description
X = torch.Tensor([1l, 2, 3]).tag("x")
x.describe("My Private Tensor") 0 <UID: 88f24c1c3d3247918d0aee46c965a4a7> [X] My Private Tensor
X_ptr = x.send(duet, searchable=True)

In [3]:

In [3]:

x_ptr = duet.store["x"
duet.requests.pandas = ! y

out[3]: In [4]:
Name Reason Request ID Requested Object's ID X = X_ptr.get(request_block=True)
0 <UID: 10¢7...> <UID: 88f2...> *
out[4]:
In [4]:

tensor([1l., 2., 3.1)
duet.requests[0].accept()

& Data Owner % Data Scientist

https://github.com/OpenMined/PySyft/tree/master/examples/duet/
https://github.com/OpenMined/PySyft

4 Conclusion

Zoracles partners with DeFi projects using zero-knowledge proofs to provide
confidential data to smart contracts. Our product lines includes confidential
credit, price feeds, and a “Snarks-As-A-Service” governance platform.

As we have the same vision with Ocean, our goal is to combine OpenMined
and ZKPs on the top of Ocean Protocol.

Overall, we have devised a clear roadmap for an end-to-end solution for
cutting releases.

	Introduction
	Machine Learning with ZKPs
	Bridging OpenMined to Ocean Protocol
	Conclusion

