Onshore Ocean Round 8

Onshore OCEAN Round 8

Proposal Submission

Name of Project:
Onshore OCEAN

Which category best describes your project? Pick one.

Build / improve applications or integrations to Ocean

Which Fundamental Metric best describes your project? Pick one.

Market WAU (Weekly market participants in Ocean Market or across all data markets)

Proposal in one sentence:

Decentralized Kaggle for Data Scientists, Analysts, and Engineers.

Description of the project and what problem is it solving:

Worked examples and tutorial series are useful tools for onboarding new data scientists, who need guided learning rather than simply reading documentation.

We propose a Kaggle-like approach for getting data scientists to use Ocean.


Round 7:

The previous proposal focused on writing Medium articles, developing a landing page for the platform and building proof-of-concept Jupyter Notebooks for exploratory data analysis (EDA) and training simple deep learning models using Ocean protocol.


Going forward, we will self host tutorials, so as not to rely on third party platforms and paywalls.

Our long term roadmap focuses on three pillars and highlighting the unique selling points of the ocean protocol.

The Jupyter Notebooks provide a frictionless onboarding experience into Ocean.

In the future (as we gather metrics and feedback), this will be expanded to interactive Jupyter Notebook micro-courses, and finally a comprehensive data science platform built on Ocean.

What is the final product?:

A full fledged web app that provides a frictionless understanding of ocean protocol, allowing data practitioners to earn income.

The application landing page and proof-of-concept Jupyter Notebooks bring a setup free approach to interacting with the new data economy.

Grant Deliverables: (Provide us with a list of deliverables for the funding provided)

  1. Hosted Web App Landing Page
  2. Launch of Notion Wiki page for project tracking and updates
  3. User Acquisition Plan

4. Proof-of-Concept Jupyter Notebooks for exploratory data analysis (EDA) and training simple deep learning models using Ocean protocol hosted on Kubernetes (Ongoing)

Funding Requested: (Amount of OCEAN your team is requesting - Round 8 Max @ $17,600 )


If your proposal is voted to receive a OceanDAO Grant, how would the proposal contribute a value greater than the grant amount back to the Ocean Ecosystem (best expressed as “Expected ROI”)?

Firstly, the project will increase adoption of the Ocean protocol platform by data scientists. The data science platform Kaggle has over 5 million registered users (https://www.kaggle.com/general/164795). These users do not have the opportunity to take a stake in the underlying Kaggle platform itself. If we assume that we can capture 0.001% of this market (50 individuals) and that 20% of these early adopters (10 individuals) choose to invest in Ocean tokens (with an average investment of 2000 $OCEAN), this results in a Total Value Locked (TVL) of 5,000,000 * 0.001% * 20% * 2000 $OCEAN = 20,000 $OCEAN demand.

Secondly, the project will increase the number of data consumer for existing datasets on the Ocean marketplace by providing tools and resources for data scientists to perform analyses and train models. However, we assume that independent data scientists will not be willing or able to pay the up-front cost of the dataset. Instead, we envision a business model where data scientists are given free access to data by the data providers, in order to build trust in the dataset and attract stakers. We assume that an average high quality data pool has a TVL of 100.000 $OCEAN over one year. We assume that the data science analyses performed by each of the early adopters increases the number of stakers on a dataset by an average of 1%. This gives 100,000 * 1% * 50 = 50,000 $OCEAN demand.

bang = 20,000 + 50,000 = 70,000 $OCEAN

buck = 32,000 $OCEAN

(% chance of success) = 70%

ROI = 70,000 / 32,000 * 0.7 = 1.5

This is above the expected ROI of 1.0.

Proposal Wallet Address: (must have minimum 500 OCEAN in wallet to be eligible. This wallet is where you will receive the grant amount if selected).


Project lead Contact Email:


Twitter Handle (if applicable):



Discord Handle (if applicable):


@richardblythman | VisioTherapy#3425

Country of Residence:

US, Ireland

Have you previously received an OceanDAO Grant (Y/N)?


How does this project drive value to the “fundamental metric” (listed above) and the overall Ocean ecosystem?

By providing a routinely updated and improved tutorial platform for data scientists, we are able to capture members for the new data economy.

Improving and maintaining these initial steps is vital for user adoption and maintaining existing practitioners. Ocean Protocol provides immense value to data scientists, but current onboarding is too esoteric for everyone. By building a maintainable tutorial series, we are able to routinely gather user feedback and standardize the initial user interactions with the protocol.

Proposal Details

Project Deliverables - Category:

  • Blog posts will be published on our own platform.
    • Previously we were targeting medium.com, but this is unnecessary.
  • Web app will be hosted and linked when the initial sign up page has been completed
  • The web app will be built on MongoDB, Express.js, Vue.js, and Node.js
  • User insights can be derived from web app tracking and monthly reporting to the community.

Project Deliverables - Roadmap

  • What is the project roadmap? That is: what are key milestones, and the target date for each milestone.


  • July:

    • :no_entry: First round of medium articles published on “How to use Ocean for Data Science”

      • This is not necessary. The team is going to focus on building the application and self hosting any tutorial content
    • :white_check_mark: Reach out to Ocean community to see if anyone has access to old Manta Ray notebooks and inspect how much can be re-used/modified

    • :white_check_mark: Community feedback for a focused USP approach, “How can we help Data Practitioners earn income?”

    • :white_check_mark: Long Term Roadmap


  • August:

    • Wire frames for the application, hosted via Figma
    • Notion Wiki launch
    • Landing page launched and hosted
  • September:

    • Landing page metrics report and alpha website
    • Complete proof-of-concept Jupyter Notebooks for exploratory data analysis (EDA) and training simple deep learning models using Ocean protocol

Future Plans (Q4-)

  • Our future plans involve building a Jupyter notebook platform dedicated to increasing adoption, similar to the Kaggle website for modern data scientists.

Team members

For each team member, give their name, role and background such as the following.

Julian Martinez

Richard Blythman

1 Like

Current allocation of funds. Please provide feedback :blush:

Initial contractor is for UX!
Edit 1: Changed terminology for clarity

1 Like

Could you pass the links to the wireframes, please.

Are you developing Kaggle kind of platform completely?
There might be open source projects that can be tweaked to your cause, just a thought.

Yes definitely! Once we finish it, we will bundle it with the Notion wiki (coming soon), for reference.

I like what you are building and will support it. Thank you very much.


[Deliverable Checklist]

[ x ] PoC jupyter hub notebooks > please use dummy credentials u: abc pw: abc
[ x ] Notion wiki > https://wealthy-snowshoe-969.notion.site/Algovera-Wiki-c47a6eec1b1f4f20855519cc134980fa

[ x ] Hosted Web App Landing Page > https://www.algovera.io/